A4.21

Mathematical Methods
Part II, 2004

State Watson's lemma, describing the asymptotic behaviour of the integral

I(λ)=0Aeλtf(t)dt,A>0I(\lambda)=\int_{0}^{A} e^{-\lambda t} f(t) d t, \quad A>0

as λ\lambda \rightarrow \infty, given that f(t)f(t) has the asymptotic expansion

f(t)n=0antnβf(t) \sim \sum_{n=0}^{\infty} a_{n} t^{n \beta}

as t0+t \rightarrow 0_{+}, where β>0\beta>0.

Consider the integral

J(λ)=abeλϕ(t)F(t)dt,J(\lambda)=\int_{a}^{b} e^{\lambda \phi(t)} F(t) d t,

where λ1\lambda \gg 1 and ϕ(t)\phi(t) has a unique maximum in the interval [a,b][a, b] at cc, with a<c<ba<c<b, such that

ϕ(c)=0,ϕ(c)<0.\phi^{\prime}(c)=0, \quad \phi^{\prime \prime}(c)<0 .

By using the change of variable from tt to ζ\zeta, defined by

ϕ(t)ϕ(c)=ζ2\phi(t)-\phi(c)=-\zeta^{2}

deduce an asymptotic expansion for J(λ)J(\lambda) as λ\lambda \rightarrow \infty. Show that the leading-order term gives

J(λ)eλϕ(c)F(c)(2πλϕ(c))12J(\lambda) \sim e^{\lambda \phi(c)} F(c)\left(\frac{2 \pi}{\lambda\left|\phi^{\prime \prime}(c)\right|}\right)^{\frac{1}{2}}

The gamma function Γ(x)\Gamma(x) is defined for x>0x>0 by

Γ(x)=0e(x1)logttdt\Gamma(x)=\int_{0}^{\infty} e^{(x-1) \log t-t} d t

By means of the substitution t=(x1)st=(x-1) s, or otherwise, deduce that

Γ(x+1)x(x+12)ex2π(1+112x+)\Gamma(x+1) \sim x^{\left(x+\frac{1}{2}\right)} e^{-x} \sqrt{2 \pi}\left(1+\frac{1}{12 x}+\ldots\right)

as xx \rightarrow \infty