A2.18

Nonlinear Waves
Part II, 2004

(i) Let u(x,t)u(x, t) satisfy the Burgers equation

ut+uux=ν2ux2\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=\nu \frac{\partial^{2} u}{\partial x^{2}}

where ν\nu is a positive constant. Consider solutions of the form u=u(X)u=u(X), where X=xUtX=x-U t and UU is a constant, such that

uu2,uX0 as X;uu1,uX0 as Xu \rightarrow u_{2}, \quad \frac{\partial u}{\partial X} \rightarrow 0 \quad \text { as } \quad X \rightarrow-\infty ; \quad u \rightarrow u_{1}, \quad \frac{\partial u}{\partial X} \rightarrow 0 \quad \text { as } \quad X \rightarrow \infty

with u2>u1u_{2}>u_{1}.

Show that UU satisfies the so-called shock condition

U=12(u2+u1)U=\frac{1}{2}\left(u_{2}+u_{1}\right)

By using the factorisation

12u2Uu+A=12(uu1)(uu2)\frac{1}{2} u^{2}-U u+A=\frac{1}{2}\left(u-u_{1}\right)\left(u-u_{2}\right)

where AA is the constant of integration, express uu in terms of X,u1,u2X, u_{1}, u_{2} and ν\nu.

(ii) According to shallow-water theory, river waves are characterised by the PDEs

vt+vvx+gcosαhx=gsinαCfv2hht+vhx+hvx=0\begin{gathered} \frac{\partial v}{\partial t}+v \frac{\partial v}{\partial x}+g \cos \alpha \frac{\partial h}{\partial x}=g \sin \alpha-C_{f} \frac{v^{2}}{h} \\ \frac{\partial h}{\partial t}+v \frac{\partial h}{\partial x}+h \frac{\partial v}{\partial x}=0 \end{gathered}

where h(x,t)h(x, t) denotes the depth of the river, v(x,t)v(x, t) denotes the mean velocity, α\alpha is the constant angle of inclination, and CfC_{f} is the constant friction coefficient.

Find the characteristic velocities and the characteristic form of the equations. Find the Riemann variables and show that if Cf=0C_{f}=0 then the Riemann variables vary linearly with tt on the characteristics.