Let ψ(k;x,t) satisfy the linear integral equation
ψ(k;x,t)+iei(kx+k3t)∫Ll+kψ(l;x,t)dλ(l)=ei(kx+k3t)
where the measure dλ(k) and the contour L are such that ψ(k;x,t) exists and is unique.
Let q(x,t) be defined in terms of ψ(k;x,t) by
q(x,t)=−∂x∂∫Lψ(k;x,t)dλ(k)
(a) Show that
(Mψ)+iei(kx+k3t)∫Ll+k(Mψ)(l;x,t)dλ(l)=0
where
Mψ≡∂x2∂2ψ−ik∂x∂ψ+qψ
(b) Show that
(Nψ)+iei(kx+k3t)∫Ll+k(Nψ)(l;x,t)dλ(l)=3kei(kx+k3t)∫Ll+k(Mψ)(l;x,t)dλ(l),
where
Nψ≡∂t∂ψ+∂x3∂3ψ+3q∂x∂ψ
(c) By recalling that the KdV equation
∂t∂q+∂x3∂3q+6q∂x∂q=0
admits the Lax pair
Mψ=0,Nψ=0,
write down an expression for dλ(l) which gives rise to the one-soliton solution of the KdV equation. Write down an expression for ψ(k;x,t) and for q(x,t).