A4.23

Nonlinear Waves
Part II, 2004

Let ψ(k;x,t)\psi(k ; x, t) satisfy the linear integral equation

ψ(k;x,t)+iei(kx+k3t)Lψ(l;x,t)l+kdλ(l)=ei(kx+k3t)\psi(k ; x, t)+i e^{i\left(k x+k^{3} t\right)} \int_{L} \frac{\psi(l ; x, t)}{l+k} d \lambda(l)=e^{i\left(k x+k^{3} t\right)}

where the measure dλ(k)d \lambda(k) and the contour LL are such that ψ(k;x,t)\psi(k ; x, t) exists and is unique.

Let q(x,t)q(x, t) be defined in terms of ψ(k;x,t)\psi(k ; x, t) by

q(x,t)=xLψ(k;x,t)dλ(k)q(x, t)=-\frac{\partial}{\partial x} \int_{L} \psi(k ; x, t) d \lambda(k)

(a) Show that

(Mψ)+iei(kx+k3t)L(Mψ)(l;x,t)l+kdλ(l)=0(M \psi)+i e^{i\left(k x+k^{3} t\right)} \int_{L} \frac{(M \psi)(l ; x, t)}{l+k} d \lambda(l)=0

where

Mψ2ψx2ikψx+qψM \psi \equiv \frac{\partial^{2} \psi}{\partial x^{2}}-i k \frac{\partial \psi}{\partial x}+q \psi

(b) Show that

(Nψ)+iei(kx+k3t)L(Nψ)(l;x,t)l+kdλ(l)=3kei(kx+k3t)L(Mψ)(l;x,t)l+kdλ(l)(N \psi)+i e^{i\left(k x+k^{3} t\right)} \int_{L} \frac{(N \psi)(l ; x, t)}{l+k} d \lambda(l)=3 k e^{i\left(k x+k^{3} t\right)} \int_{L} \frac{(M \psi)(l ; x, t)}{l+k} d \lambda(l),

where

Nψψt+3ψx3+3qψxN \psi \equiv \frac{\partial \psi}{\partial t}+\frac{\partial^{3} \psi}{\partial x^{3}}+3 q \frac{\partial \psi}{\partial x}

(c) By recalling that the KdV\mathrm{KdV} equation

qt+3qx3+6qqx=0\frac{\partial q}{\partial t}+\frac{\partial^{3} q}{\partial x^{3}}+6 q \frac{\partial q}{\partial x}=0

admits the Lax pair

Mψ=0,Nψ=0,M \psi=0, \quad N \psi=0,

write down an expression for dλ(l)d \lambda(l) which gives rise to the one-soliton solution of the KdV\mathrm{KdV} equation. Write down an expression for ψ(k;x,t)\psi(k ; x, t) and for q(x,t)q(x, t).