A3.2

Principles of Dynamics
Part II, 2004

(i) Explain the concept of a canonical transformation from coordinates (qa,pa)\left(q^{a}, p^{a}\right) to (Qa,Pa)\left(Q^{a}, P^{a}\right). Derive the transformations corresponding to generating functions F1(t,qa,Qa)F_{1}\left(t, q^{a}, Q^{a}\right) and F2(t,qa,Pa)F_{2}\left(t, q^{a}, P^{a}\right).

(ii) A particle moving in an electromagnetic field is described by the Lagrangian

L=12mx˙2e(ϕx˙Ac)L=\frac{1}{2} m \dot{\mathbf{x}}^{2}-e\left(\phi-\frac{\dot{\mathbf{x}} \cdot \mathbf{A}}{c}\right)

where cc is constant

(a) Derive the equations of motion in terms of the electric and magnetic fields E\mathbf{E} and B\mathbf{B}.

(b) Show that E\mathbf{E} and B\mathbf{B} are invariant under the gauge transformation

AA+Λ,ϕϕ1cΛt\mathbf{A} \rightarrow \mathbf{A}+\nabla \Lambda, \quad \phi \rightarrow \phi-\frac{1}{c} \frac{\partial \Lambda}{\partial t}

for arbitraryΛ(t,x)\operatorname{arbitrary} \Lambda(t, \mathbf{x}).

(c) Construct the Hamiltonian. Find the generating function F2F_{2} for the canonical transformation which implements the gauge transformation (1).