A4.5

Electromagnetism
Part II, 2004

Consider a frame SS^{\prime} moving with velocity v relative to the laboratory frame SS where v2c2|\mathbf{v}|^{2} \ll c^{2}. The electric and magnetic fields in SS are E\mathbf{E} and B\mathbf{B}, while those measured in SS^{\prime} are E\mathbf{E}^{\prime} and B\mathbf{B}^{\prime}. Given that B=B\mathbf{B}^{\prime}=\mathbf{B}, show that

ΓEdl=Γ(E+vB)dl,\oint_{\Gamma} \mathbf{E}^{\prime} \cdot d \mathbf{l}=\oint_{\Gamma}(\mathbf{E}+\mathbf{v} \wedge \mathbf{B}) \cdot d \mathbf{l},

for any closed circuit Γ\Gamma and hence that E=E+vB\mathbf{E}^{\prime}=\mathbf{E}+\mathbf{v} \wedge \mathbf{B}.

Now consider a fluid with electrical conductivity σ\sigma and moving with velocity v(r)\mathbf{v}(\mathbf{r}). Use Ohm's law in the moving frame to relate the current density j\mathbf{j} to the electric field E\mathbf{E} in the laboratory frame, and show that if j\mathbf{j} remains finite in the limit σ\sigma \rightarrow \infty then

Bt=(vB)\frac{\partial \mathbf{B}}{\partial t}=\nabla \wedge(\mathbf{v} \wedge \mathbf{B})

The magnetic helicity HH in a volume VV is given by VABdτ\int_{V} \mathbf{A} \cdot \mathbf{B} d \tau where A\mathbf{A} is the vector potential. Show that if the normal components of v\mathbf{v} and B\mathbf{B} both vanish on the surface bounding VV then dH/dt=0d H / d t=0.