(i) State the law of quadratic reciprocity. For p=5 an odd prime, evaluate the Legendre symbol
(p5)
(ii) (a) Let p1,…,pm and q1,…,qn be distinct odd primes. Show that there exists an integer x that is a quadratic residue modulo each of p1,…,pm and a quadratic non-residue modulo each of q1,…,qn.
(b) Let p be an odd prime. Show that
a=1∑p−1(pa)=0
(c) Let p be an odd prime. Using (b) or otherwise, evaluate
a=1∑p−2(pa)(pa+1)
[ Hint for (c) : Use the equality (px2y)=(py), valid when p does not divide x.]