A4.15 B4.22

Foundations of Quantum Mechanics
Part II, 2004

The states of the hydrogen atom are denoted by nlm|n l m\rangle with l<n,lmll<n,-l \leq m \leq l and associated energy eigenvalue EnE_{n}, where

En=e28πϵ0a0n2.E_{n}=-\frac{e^{2}}{8 \pi \epsilon_{0} a_{0} n^{2}} .

A hydrogen atom is placed in a weak electric field with interaction Hamiltonian

H1=eEzH_{1}=-e \mathcal{E} z

a) Derive the necessary perturbation theory to show that to O(E2)O\left(\mathcal{E}^{2}\right) the change in the energy associated with the state 100|100\rangle is given by

ΔE1=e2E2n=2l=0n1m=ll100znlm2E1En\Delta E_{1}=e^{2} \mathcal{E}^{2} \sum_{n=2}^{\infty} \sum_{l=0}^{n-1} \sum_{m=-l}^{l} \frac{|\langle 100|z| n l m\rangle|^{2}}{E_{1}-E_{n}}

The wavefunction of the ground state 100|100\rangle is

ψn=1(r)=1(πa03)1/2er/a0\psi_{n=1}(\mathbf{r})=\frac{1}{\left(\pi a_{0}^{3}\right)^{1 / 2}} e^{-r / a_{0}}

By replacing En,n>1E_{n}, \forall n>1, in the denominator of ()(*) by E2E_{2} show that

ΔE1<32π3ϵ0E2a03\left|\Delta E_{1}\right|<\frac{32 \pi}{3} \epsilon_{0} \mathcal{E}^{2} a_{0}^{3}

b) Find a matrix whose eigenvalues are the perturbed energies to O(E)O(\mathcal{E}) for the states 200|200\rangle and 210|210\rangle. Hence, determine these perturbed energies to O(E)O(\mathcal{E}) in terms of the matrix elements of zz between these states.

[Hint:

nlmznlm=0n,l,mnlmznlm=0n,l,l,m,m,mm\begin{aligned} \langle n l m|z| n l m\rangle &=0 & & \forall n, l, m \\ \left\langle n l m|z| n l^{\prime} m^{\prime}\right\rangle &=0 & & \forall n, l, l^{\prime}, m, m^{\prime}, \quad m \neq m^{\prime} \end{aligned}