A2.15 B2.24

General Relativity
Part II, 2004

(i) State and prove Birkhoff's theorem.

(ii) Derive the Schwarzschild metric and discuss its relevance to the problem of gravitational collapse and the formation of black holes.

[Hint: You may assume that the metric takes the form

ds2=eν(r,t)dt2+eλ(r,t)dr2+r2(dθ2+sin2θdϕ2)d s^{2}=-e^{\nu(r, t)} d t^{2}+e^{\lambda(r, t)} d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)

and that the non-vanishing components of the Einstein tensor are given by

Gtt=e2ν+λr2(1+eλ+rλ),Grt=e(ν+λ)/2λ˙r,Grr=eλr2(1eλ+rν),Gθθ=14r2eλ[2ν+(ν)2+2r(νλ)νλ]14r2eν[2λ¨+(λ˙)2λ˙ν˙]=Grt and Gϕϕ=sin2θGθθ.]\begin{aligned} & G_{t t}=\frac{e^{2 \nu+\lambda}}{r^{2}}\left(-1+e^{\lambda}+r \lambda^{\prime}\right), \quad G_{r t}=e^{(\nu+\lambda) / 2} \frac{\dot{\lambda}}{r}, \quad G_{r r}=\frac{e^{\lambda}}{r^{2}}\left(1-e^{-\lambda}+r \nu^{\prime}\right), \\ & G_{\theta \theta}=\frac{1}{4} r^{2} e^{-\lambda}\left[2 \nu^{\prime \prime}+\left(\nu^{\prime}\right)^{2}+\frac{2}{r}\left(\nu^{\prime}-\lambda^{\prime}\right)-\nu^{\prime} \lambda^{\prime}\right]-\frac{1}{4} r^{2} e^{-\nu}\left[2 \ddot{\lambda}+(\dot{\lambda})^{2}-\dot{\lambda} \dot{\nu}\right] \\ =&\left.G_{r t} \text { and } G_{\phi \phi}=\sin ^{2} \theta G_{\theta \theta} .\right] \end{aligned}