B2.6

Representation Theory
Part II, 2004

Let HH be a group with three generators c,g,hc, g, h and relations cp=gp=hp=1c^{p}=g^{p}=h^{p}=1, cg=gc,ch=hcc g=g c, c h=h c and gh=chgg h=c h g where pp is a prime number.

(a) Show that H=p3|H|=p^{3}. Show that the conjugacy classes of HH are the singletons {1},{c},,{cp1}\{1\},\{c\}, \ldots,\left\{c^{p-1}\right\} and the sets {gmhn,cgmhn,,cp1gmhn}\left\{g^{m} h^{n}, c g^{m} h^{n}, \ldots, c^{p-1} g^{m} h^{n}\right\}, as m,nm, n range from 0 to p1p-1, but (m,n)(0,0)(m, n) \neq(0,0).

(b) Find p2p^{2} 1-dimensional representations of HH.

(c) Let ω1\omega \neq 1 be a pp th root of unity. Show that the following defines an irreducible representation of HH on Cp\mathbb{C}^{p} :

ρ(c)=ωId,ρ(g)ek=ωkek,ρ(h)ep=e1 and ρ(h)ek=ek+1 if k<p\begin{gathered} \rho(c)=\omega \mathrm{Id}, \\ \rho(g) \mathbf{e}_{k}=\omega^{k} \mathbf{e}_{k}, \\ \rho(h) \mathbf{e}_{p}=\mathbf{e}_{1} \text { and } \rho(h) \mathbf{e}_{k}=\mathbf{e}_{k+1} \text { if } k<p \end{gathered}

where the ek\mathbf{e}_{k} are the standard basis vectors of Cp\mathbb{C}^{p}.

(d) Show that (b) and (c) cover all irreducible isomorphism classes.