2.II.26I

Applied Probability
Part II, 2005

What does it mean to say that (Xt)\left(X_{t}\right) is a renewal process?

Let (Xt)\left(X_{t}\right) be a renewal process with holding times S1,S2,S_{1}, S_{2}, \ldots and let s>0s>0. For n1n \geqslant 1, set Tn=SXs+nT_{n}=S_{X_{s}+n}. Show that

P(Tn>t)P(Sn>t),t0,\mathbb{P}\left(T_{n}>t\right) \geqslant \mathbb{P}\left(S_{n}>t\right), \quad t \geqslant 0,

for all nn, with equality if n2n \geqslant 2.

Consider now the case where S1,S2,S_{1}, S_{2}, \ldots are exponential random variables. Show that

P(T1>t)>P(S1>t),t>0\mathbb{P}\left(T_{1}>t\right)>\mathbb{P}\left(S_{1}>t\right), \quad t>0

and that, as ss \rightarrow \infty,

P(T1>t)P(S1+S2>t),t0\mathbb{P}\left(T_{1}>t\right) \rightarrow \mathbb{P}\left(S_{1}+S_{2}>t\right), \quad t \geqslant 0