2.II.30C

Partial Differential Equations
Part II, 2005

Define a fundamental solution of a linear partial differential operator PP. Prove that the function

G(x)=12exG(x)=\frac{1}{2} e^{-|x|}

defines a distribution which is a fundamental solution of the operator PP given by

Pu=d2udx2+u.P u=-\frac{d^{2} u}{d x^{2}}+u .

Hence find a solution u0u_{0} to the equation

d2u0dx2+u0=V(x),-\frac{d^{2} u_{0}}{d x^{2}}+u_{0}=V(x),

where V(x)=0V(x)=0 for x>1|x|>1 and V(x)=1V(x)=1 for x1|x| \leqslant 1.

Consider the functional

I[u]=R{12[(dudx)2+u2]Vu}dx.I[u]=\int_{\mathbb{R}}\left\{\frac{1}{2}\left[\left(\frac{d u}{d x}\right)^{2}+u^{2}\right]-V u\right\} d x .

Show that I[u0+ϕ]>I[u0]I\left[u_{0}+\phi\right]>I\left[u_{0}\right] for all Schwartz functions ϕ\phi that are not identically zero.