4.II.30C

Partial Differential Equations
Part II, 2005

Write down the solution of the three-dimensional wave equation

uttΔu=0,u(0,x)=0,ut(0,x)=g(x),u_{t t}-\Delta u=0, \quad u(0, x)=0, \quad u_{t}(0, x)=g(x),

for a Schwartz function gg. Here Δ\Delta is taken in the variables xR3x \in \mathbb{R}^{3} and ut=u/tu_{t}=\partial u / \partial t etc. State the "strong" form of Huygens principle for this solution. Using the method of descent, obtain the solution of the corresponding problem in two dimensions. State the "weak" form of Huygens principle for this solution.

Let uC2([0,T]×R3)u \in C^{2}\left([0, T] \times \mathbb{R}^{3}\right) be a solution of

uttΔu+x2u=0,u(0,x)=0,ut(0,x)=0u_{t t}-\Delta u+|x|^{2} u=0, \quad u(0, x)=0, \quad u_{t}(0, x)=0

Show that

te+p=0\partial_{t} e+\nabla \cdot \mathbf{p}=0

where

e=12(ut2+u2+x2u2), and p=utu.e=\frac{1}{2}\left(u_{t}^{2}+|\nabla u|^{2}+|x|^{2} u^{2}\right), \quad \text { and } \quad \mathbf{p}=-u_{t} \nabla u .

Hence deduce, by integration of ()(* *) over the region

K={(t,x):0tt0at0,xx0t0t}K=\left\{(t, x): 0 \leqslant t \leqslant t_{0}-a \leqslant t_{0},\left|x-x_{0}\right| \leqslant t_{0}-t\right\}

or otherwise, that ()(*) satisfies the weak Huygens principle.