1.II
Part II, 2005
Explain what is meant by an asymptotic power series about for a real function of a real variable. Show that a convergent power series is also asymptotic.
Show further that an asymptotic power series is unique (assuming that it exists).
Let the function be defined for by
By suitably expanding the denominator of the integrand, or otherwise, show that, as ,
and that the error, when the series is stopped after terms, does not exceed the absolute value of the th term of the series.