3.II.31A

Integrable Systems
Part II, 2005

Let Q(x,t)Q(x, t) be an off-diagonal 2×22 \times 2 matrix. The matrix NLS equation

iQtQxxσ3+2Q3σ3=0,σ3=diag(1,1),i Q_{t}-Q_{x x} \sigma_{3}+2 Q^{3} \sigma_{3}=0, \quad \sigma_{3}=\operatorname{diag}(1,-1),

admits the Lax pair

μx+ik[σ3,μ]=Qμμt+2ik2[σ3,μ]=(2kQiQ2σ3iQxσ3)μ\begin{aligned} &\mu_{x}+i k\left[\sigma_{3}, \mu\right]=Q \mu \\ &\mu_{t}+2 i k^{2}\left[\sigma_{3}, \mu\right]=\left(2 k Q-i Q^{2} \sigma_{3}-i Q_{x} \sigma_{3}\right) \mu \end{aligned}

where kC,μ(x,t,k)k \in \mathbb{C}, \mu(x, t, k) is a 2×22 \times 2 matrix and [σ3,μ]\left[\sigma_{3}, \mu\right] denotes the matrix commutator.

Let S(k)S(k) be a 2×22 \times 2 matrix-valued function decaying as k|k| \rightarrow \infty. Let μ(x,t,k)\mu(x, t, k) satisfy the 2×22 \times 2-matrix Riemann-Hilbert problem

μ+(x,t,k)=μ(x,t,k)ei(kx+2k2t)σ3S(k)ei(kx+2k2t)σ3,kRμ=diag(1,1)+O(1k),k\begin{gathered} \mu^{+}(x, t, k)=\mu^{-}(x, t, k) e^{-i\left(k x+2 k^{2} t\right) \sigma_{3}} S(k) e^{i\left(k x+2 k^{2} t\right) \sigma_{3}}, \quad k \in \mathbb{R} \\ \mu=\operatorname{diag}(1,1)+\mathrm{O}\left(\frac{1}{k}\right), \quad k \rightarrow \infty \end{gathered}

(a) Find expressions for Q(x,t),A(x,t)Q(x, t), A(x, t) and B(x,t)B(x, t), in terms of the coefficients in the large kk expansion of μ\mu, so that μ\mu solves

μx+ik[σ3,μ]Qμ=0\mu_{x}+i k\left[\sigma_{3}, \mu\right]-Q \mu=0

and

μt+2ik2[σ3,μ](kA+B)μ=0\mu_{t}+2 i k^{2}\left[\sigma_{3}, \mu\right]-(k A+B) \mu=0

(b) Use the result of (a) to establish that

A=2Q,B=i(Q2+Qx)σ3A=2 Q, \quad B=-i\left(Q^{2}+Q_{x}\right) \sigma_{3}

(c) Show that the above results provide a linearization of the matrix NLS equation. What is the disadvantage of this approach in comparison with the inverse scattering method?