2.II.32D

Principles of Quantum Mechanics
Part II, 2005

The components of σ=(σ1,σ2,σ3)\boldsymbol{\sigma}=\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right) are 2×22 \times 2 hermitian matrices obeying

[σi,σj]=2iεijkσk and (nσ)2=1\left[\sigma_{i}, \sigma_{j}\right]=2 i \varepsilon_{i j k} \sigma_{k} \quad \text { and } \quad(\mathbf{n} \cdot \boldsymbol{\sigma})^{2}=1

for any unit vector n\mathbf{n}. Show that these properties imply

(aσ)(bσ)=ab+i(a×b)σ(\mathbf{a} \cdot \boldsymbol{\sigma})(\mathbf{b} \cdot \boldsymbol{\sigma})=\mathbf{a} \cdot \mathbf{b}+i(\mathbf{a} \times \mathbf{b}) \cdot \boldsymbol{\sigma}

for any constant vectors a and b\mathbf{b}. Assuming that θ\theta is real, explain why the matrix U=exp(inσθ/2)U=\exp (-i \mathbf{n} \cdot \boldsymbol{\sigma} \theta / 2) is unitary, and show that

U=cos(θ/2)inσsin(θ/2)U=\cos (\theta / 2)-i \mathbf{n} \cdot \boldsymbol{\sigma} \sin (\theta / 2)

Hence deduce that

UmσU1=mσcosθ+(n×m)σsinθU \mathbf{m} \cdot \boldsymbol{\sigma} U^{-1}=\mathbf{m} \cdot \boldsymbol{\sigma} \cos \theta+(\mathbf{n} \times \mathbf{m}) \cdot \boldsymbol{\sigma} \sin \theta

where m\mathbf{m} is any unit vector orthogonal to n\mathbf{n}.

Write down an equation relating the matrices σ\sigma and the angular momentum operator S\mathbf{S} for a particle of spin one half, and explain briefly the significance of the conditions ()(*). Show that if χ|\chi\rangle is a state with spin 'up' measured along the direction (0,0,1)(0,0,1) then, for a certain choice of n,Uχ\mathbf{n}, U|\chi\rangle is a state with spin 'up' measured along the direction (sinθ,0,cosθ)(\sin \theta, 0, \cos \theta).