1.II.33B

Applications of Quantum Mechanics
Part II, 2005

A beam of particles is incident on a central potential V(r)(r=x)V(r)(r=|\mathbf{x}|) that vanishes for r>Rr>R. Define the differential cross-section dσ/dΩd \sigma / d \Omega.

Given that each incoming particle has momentum k\hbar \mathbf{k}, explain the relevance of solutions to the time-independent Schrödinger equation with the asymptotic form

ψ(x)eikx+f(x^)eikrr\psi(\mathbf{x}) \sim e^{i \mathbf{k} \cdot \mathbf{x}}+f(\hat{\mathbf{x}}) \frac{e^{i k r}}{r}

as rr \rightarrow \infty, where k=kk=|\mathbf{k}| and x^=x/r\hat{\mathbf{x}}=\mathbf{x} / r. Write down a formula that determines dσ/dΩd \sigma / d \Omega in this case.

Write down the time-independent Schrödinger equation for a particle of mass mm and energy E=2k22mE=\frac{\hbar^{2} k^{2}}{2 m} in a central potential V(r)V(r), and show that it allows a solution of the form

ψ(x)=eikxm2π2d3xeikxxxxV(r)ψ(x).\psi(\mathbf{x})=e^{i \mathbf{k} \cdot \mathbf{x}}-\frac{m}{2 \pi \hbar^{2}} \int d^{3} x^{\prime} \frac{e^{i k\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} V\left(r^{\prime}\right) \psi\left(\mathbf{x}^{\prime}\right) .

Show that this is consistent with ()(*) and deduce an expression for f(x^)f(\hat{\mathbf{x}}). Obtain the Born approximation for f(x^)f(\hat{\mathbf{x}}), and show that f(x^)=F(kx^k)f(\hat{\mathbf{x}})=F(k \hat{\mathbf{x}}-\mathbf{k}), where

F(q)=m2π2d3xeiqxV(r)F(\mathbf{q})=-\frac{m}{2 \pi \hbar^{2}} \int d^{3} x e^{-i \mathbf{q} \cdot \mathbf{x}} V(r)

Under what conditions is the Born approximation valid?

Obtain a formula for f(x^)f(\hat{\mathbf{x}}) in terms of the scattering angle θ\theta in the case that

V(r)=Keμrr,V(r)=K \frac{e^{-\mu r}}{r},

for constants KK and μ\mu. Hence show that f(x^)f(\hat{\mathbf{x}}) is independent of \hbar in the limit μ0\mu \rightarrow 0, when expressed in terms of θ\theta and the energy EE.

[You may assume that (2+k2)(eikrr)=4πδ3(x).]\left.\left(\nabla^{2}+k^{2}\right)\left(\frac{e^{i k r}}{r}\right)=-4 \pi \delta^{3}(\mathbf{x}) .\right]