2.II.33B

Applications of Quantum Mechanics
Part II, 2005

Describe briefly the variational approach to the determination of an approximate ground state energy E0E_{0} of a Hamiltonian HH.

Let ψ1\left|\psi_{1}\right\rangle and ψ2\left|\psi_{2}\right\rangle be two states, and consider the trial state

ψ=a1ψ1+a2ψ2|\psi\rangle=a_{1}\left|\psi_{1}\right\rangle+a_{2}\left|\psi_{2}\right\rangle

for real constants a1a_{1} and a2a_{2}. Given that

ψ1ψ1=ψ2ψ2=1,ψ2ψ1=ψ1ψ2=s,ψ1Hψ1=ψ2Hψ2=E,ψ2Hψ1=ψ1Hψ2=ϵ,\begin{aligned} \left\langle\psi_{1} \mid \psi_{1}\right\rangle &=\left\langle\psi_{2} \mid \psi_{2}\right\rangle=1, &\left\langle\psi_{2} \mid \psi_{1}\right\rangle=\left\langle\psi_{1} \mid \psi_{2}\right\rangle=s, \\ \left\langle\psi_{1}|H| \psi_{1}\right\rangle &=\left\langle\psi_{2}|H| \psi_{2}\right\rangle=\mathcal{E}, &\left\langle\psi_{2}|H| \psi_{1}\right\rangle=\left\langle\psi_{1}|H| \psi_{2}\right\rangle=\epsilon, \end{aligned}

and that ϵ<sE\epsilon<s \mathcal{E}, obtain an upper bound on E0E_{0} in terms of E,ϵ\mathcal{E}, \epsilon and ss.

The normalized ground-state wavefunction of the Hamiltonian

H1=p22mKδ(x),K>0,H_{1}=\frac{p^{2}}{2 m}-K \delta(x), \quad K>0,

ψ1(x)=λeλx,λ=mK2.\psi_{1}(x)=\sqrt{\lambda} e^{-\lambda|x|}, \quad \lambda=\frac{m K}{\hbar^{2}} .

Verify that the ground state energy of H1H_{1} is

EBψ1Hψ1=12Kλ.E_{B} \equiv\left\langle\psi_{1}|H| \psi_{1}\right\rangle=-\frac{1}{2} K \lambda .

Now consider the Hamiltonian

H=p22mKδ(x)Kδ(xR)H=\frac{p^{2}}{2 m}-K \delta(x)-K \delta(x-R)

and let E0(R)E_{0}(R) be its ground-state energy as a function of RR. Assuming that

ψ2(x)=λeλxR,\psi_{2}(x)=\sqrt{\lambda} e^{-\lambda|x-R|},

use ()(*) to compute s,Es, \mathcal{E} and ϵ\epsilon for ψ1\psi_{1} and ψ2\psi_{2} as given. Hence show that

E0(R)EB[1+2eλR(1+eλR)1+(1+λR)eλR]E_{0}(R) \leqslant E_{B}\left[1+2 \frac{e^{-\lambda R}\left(1+e^{-\lambda R}\right)}{1+(1+\lambda R) e^{-\lambda R}}\right]

Why should you expect this inequality to become an approximate equality for sufficiently large RR ? Describe briefly how this is relevant to molecular binding.