In a frame F \mathcal{F} F   the electromagnetic fields ( E , B ) (\mathbf{E}, \mathbf{B}) ( E , B )   are encoded into the Maxwell field 4-tensor F a b F^{a b} F a b   and its dual ∗ F a b { }^{*} F^{a b} ∗ F a b  , where
F a b = ( 0 − E x − E y − E z E x 0 − B z B y E y B z 0 − B x E z − B y B x 0 ) F^{a b}=\left(\begin{array}{cccc} 0 & -E_{x} & -E_{y} & -E_{z} \\ E_{x} & 0 & -B_{z} & B_{y} \\ E_{y} & B_{z} & 0 & -B_{x} \\ E_{z} & -B_{y} & B_{x} & 0 \end{array}\right) F a b = ⎝ ⎜ ⎜ ⎜ ⎛  0 E x  E y  E z   − E x  0 B z  − B y   − E y  − B z  0 B x   − E z  B y  − B x  0  ⎠ ⎟ ⎟ ⎟ ⎞  
and
∗ F a b = ( 0 − B x − B y − B z B x 0 E z − E y B y − E z 0 E x B z E y − E x 0 ) { }^{*} F^{a b}=\left(\begin{array}{cccc} 0 & -B_{x} & -B_{y} & -B_{z} \\ B_{x} & 0 & E_{z} & -E_{y} \\ B_{y} & -E_{z} & 0 & E_{x} \\ B_{z} & E_{y} & -E_{x} & 0 \end{array}\right) ∗ F a b = ⎝ ⎜ ⎜ ⎜ ⎛  0 B x  B y  B z   − B x  0 − E z  E y   − B y  E z  0 − E x   − B z  − E y  E x  0  ⎠ ⎟ ⎟ ⎟ ⎞  
[Here the signature is ( + − − − ) (+---) ( + − − − )   and units are chosen so that c = 1 c=1 c = 1  .] Obtain two independent Lorentz scalars of the electromagnetic field in terms of E \mathbf{E} E   and B \mathbf{B} B  .
Suppose that E ⋅ B > 0 \mathbf{E} \cdot \mathbf{B}>0 E ⋅ B > 0   in the frame F \mathcal{F} F  . Given that there exists a frame F ′ \mathcal{F}^{\prime} F ′   in which E ′ × B ′ = 0 \mathbf{E}^{\prime} \times \mathbf{B}^{\prime}=\mathbf{0} E ′ × B ′ = 0  , show that
E ′ = [ ( E ⋅ B ) ( K + 1 + K 2 ) ] 1 / 2 , B ′ = [ E ⋅ B K + 1 + K 2 ] 1 / 2 , E^{\prime}=\left[(\mathbf{E} \cdot \mathbf{B})\left(K+\sqrt{1+K^{2}}\right)\right]^{1 / 2}, \quad B^{\prime}=\left[\frac{\mathbf{E} \cdot \mathbf{B}}{K+\sqrt{1+K^{2}}}\right]^{1 / 2}, E ′ = [ ( E ⋅ B ) ( K + 1 + K 2  ) ] 1 / 2 , B ′ = [ K + 1 + K 2  E ⋅ B  ] 1 / 2 , 
where ( E ′ , B ′ ) \left(E^{\prime}, B^{\prime}\right) ( E ′ , B ′ )   are the magnitudes of ( E ′ , B ′ ) \left(\mathbf{E}^{\prime}, \mathbf{B}^{\prime}\right) ( E ′ , B ′ )  , and
K = 1 2 ( ∣ E ∣ 2 − ∣ B ∣ 2 ) / ( E ⋅ B ) K=\frac{1}{2}\left(|\mathbf{E}|^{2}-|\mathbf{B}|^{2}\right) /(\mathbf{E} \cdot \mathbf{B}) K = 2 1  ( ∣ E ∣ 2 − ∣ B ∣ 2 ) / ( E ⋅ B ) 
[Hint: there is no need to consider the Lorentz transformations for E ′ \mathbf{E}^{\prime} E ′   and B ′ \mathbf{B}^{\prime} B ′  .]