In a frame F \mathcal{F} F the electromagnetic fields ( E , B ) (\mathbf{E}, \mathbf{B}) ( E , B ) are encoded into the Maxwell field 4-tensor F a b F^{a b} F a b and its dual ∗ F a b { }^{*} F^{a b} ∗ F a b , where
F a b = ( 0 − E x − E y − E z E x 0 − B z B y E y B z 0 − B x E z − B y B x 0 ) F^{a b}=\left(\begin{array}{cccc} 0 & -E_{x} & -E_{y} & -E_{z} \\ E_{x} & 0 & -B_{z} & B_{y} \\ E_{y} & B_{z} & 0 & -B_{x} \\ E_{z} & -B_{y} & B_{x} & 0 \end{array}\right) F a b = ⎝ ⎜ ⎜ ⎜ ⎛ 0 E x E y E z − E x 0 B z − B y − E y − B z 0 B x − E z B y − B x 0 ⎠ ⎟ ⎟ ⎟ ⎞
and
∗ F a b = ( 0 − B x − B y − B z B x 0 E z − E y B y − E z 0 E x B z E y − E x 0 ) { }^{*} F^{a b}=\left(\begin{array}{cccc} 0 & -B_{x} & -B_{y} & -B_{z} \\ B_{x} & 0 & E_{z} & -E_{y} \\ B_{y} & -E_{z} & 0 & E_{x} \\ B_{z} & E_{y} & -E_{x} & 0 \end{array}\right) ∗ F a b = ⎝ ⎜ ⎜ ⎜ ⎛ 0 B x B y B z − B x 0 − E z E y − B y E z 0 − E x − B z − E y E x 0 ⎠ ⎟ ⎟ ⎟ ⎞
[Here the signature is ( + − − − ) (+---) ( + − − − ) and units are chosen so that c = 1 c=1 c = 1 .] Obtain two independent Lorentz scalars of the electromagnetic field in terms of E \mathbf{E} E and B \mathbf{B} B .
Suppose that E ⋅ B > 0 \mathbf{E} \cdot \mathbf{B}>0 E ⋅ B > 0 in the frame F \mathcal{F} F . Given that there exists a frame F ′ \mathcal{F}^{\prime} F ′ in which E ′ × B ′ = 0 \mathbf{E}^{\prime} \times \mathbf{B}^{\prime}=\mathbf{0} E ′ × B ′ = 0 , show that
E ′ = [ ( E ⋅ B ) ( K + 1 + K 2 ) ] 1 / 2 , B ′ = [ E ⋅ B K + 1 + K 2 ] 1 / 2 , E^{\prime}=\left[(\mathbf{E} \cdot \mathbf{B})\left(K+\sqrt{1+K^{2}}\right)\right]^{1 / 2}, \quad B^{\prime}=\left[\frac{\mathbf{E} \cdot \mathbf{B}}{K+\sqrt{1+K^{2}}}\right]^{1 / 2}, E ′ = [ ( E ⋅ B ) ( K + 1 + K 2 ) ] 1 / 2 , B ′ = [ K + 1 + K 2 E ⋅ B ] 1 / 2 ,
where ( E ′ , B ′ ) \left(E^{\prime}, B^{\prime}\right) ( E ′ , B ′ ) are the magnitudes of ( E ′ , B ′ ) \left(\mathbf{E}^{\prime}, \mathbf{B}^{\prime}\right) ( E ′ , B ′ ) , and
K = 1 2 ( ∣ E ∣ 2 − ∣ B ∣ 2 ) / ( E ⋅ B ) K=\frac{1}{2}\left(|\mathbf{E}|^{2}-|\mathbf{B}|^{2}\right) /(\mathbf{E} \cdot \mathbf{B}) K = 2 1 ( ∣ E ∣ 2 − ∣ B ∣ 2 ) / ( E ⋅ B )
[Hint: there is no need to consider the Lorentz transformations for E ′ \mathbf{E}^{\prime} E ′ and B ′ \mathbf{B}^{\prime} B ′ .]