3.II .35 B. 35 \mathrm{~B} \quad

Electrodynamics
Part II, 2005

A non-relativistic particle of rest mass mm and charge qq is moving slowly with velocity v(t)\mathbf{v}(t). The power dP/dΩd P / d \Omega radiated per unit solid angle in the direction of a unit vector n\mathbf{n} is

dPdΩ=μ016π2n×qv˙2.\frac{d P}{d \Omega}=\frac{\mu_{0}}{16 \pi^{2}}|\mathbf{n} \times q \dot{\mathbf{v}}|^{2} .

Obtain Larmor's formula

P=μ0q26πv˙2.P=\frac{\mu_{0} q^{2}}{6 \pi}|\dot{\mathbf{v}}|^{2} .

The particle has energy E\mathcal{E} and, starting from afar, makes a head-on collision with a fixed central force described by a potential V(r)V(r), where V(r)>EV(r)>\mathcal{E} for r<r0r<r_{0} and V(r)<EV(r)<\mathcal{E} for r>r0r>r_{0}. Let WW be the total energy radiated by the particle. Given that WEW \ll \mathcal{E}, show that

Wμ0q23πm2m2r0(dVdr)2drV(r0)V(r)W \approx \frac{\mu_{0} q^{2}}{3 \pi m^{2}} \sqrt{\frac{m}{2}} \int_{r_{0}}^{\infty}\left(\frac{d V}{d r}\right)^{2} \frac{d r}{\sqrt{V\left(r_{0}\right)-V(r)}}