4.II .35 B. 35 \mathrm{~B} \quad

Electrodynamics
Part II, 2005

In Ginzburg-Landau theory, superconductivity is due to "supercarriers" of mass msm_{s} and charge qsq_{s}, which are described by a macroscopic wavefunction ψ\psi with "Mexican hat" potential

V=α(T)ψ2+12βψ4V=\alpha(T)|\psi|^{2}+\frac{1}{2} \beta|\psi|^{4}

Here, β>0\beta>0 is constant and α(T)\alpha(T) is a function of temperature TT such that α(T)>0\alpha(T)>0 for T>TcT>T_{c} but α(T)<0\alpha(T)<0 for T<TcT<T_{c}, where TcT_{c} is a critical temperature. In the presence of a magnetic field B=×A\mathbf{B}=\boldsymbol{\nabla} \times \mathbf{A}, the total energy of the superconducting system is

E[ψ,ψ,A]=d3x[12μ0Ak,j(Ak,jAj,k)+22msψ,k+iqsAkψ2+V]E\left[\psi, \psi^{*}, \mathbf{A}\right]=\int d^{3} x\left[\frac{1}{2 \mu_{0}} A_{k, j}\left(A_{k, j}-A_{j, k}\right)+\frac{\hbar^{2}}{2 m_{s}}\left|\psi_{, k}+i \frac{q_{s}}{\hbar} A_{k} \psi\right|^{2}+V\right]

Use this to derive the equations

22ms(iqsA)2ψ+(α+βψ2)ψ=0-\frac{\hbar^{2}}{2 m_{s}}\left(\nabla-i \frac{q_{s}}{\hbar} \mathbf{A}\right)^{2} \psi+\left(\alpha+\beta|\psi|^{2}\right) \psi=0

and

×B(A)2A=μ0j\boldsymbol{\nabla} \times \mathbf{B} \equiv \boldsymbol{\nabla}(\boldsymbol{\nabla} \cdot \mathbf{A})-\nabla^{2} \mathbf{A}=\mu_{0} \mathbf{j}

where

j=iqs2ms(ψψψψ)qs2msψ2A=qs2ms[ψ(iqsA)ψ+ψ(iqsA)ψ]\begin{aligned} \mathbf{j} &=-\frac{i q_{s} \hbar}{2 m_{s}}\left(\psi^{*} \boldsymbol{\nabla} \psi-\psi \boldsymbol{\nabla} \psi^{*}\right)-\frac{q_{s}^{2}}{m_{s}}|\psi|^{2} \mathbf{A} \\ &=\frac{q_{s}}{2 m_{s}}\left[\psi^{*}\left(-i \hbar \boldsymbol{\nabla}-q_{s} \mathbf{A}\right) \psi+\psi\left(i \hbar \boldsymbol{\nabla}-q_{s} \mathbf{A}\right) \psi^{*}\right] \end{aligned}

Suppose that we write the wavefunction as

ψ=nseiθ\psi=\sqrt{n_{s}} e^{i \theta}

where nsn_{s} is the (real positive) supercarrier density and θ\theta is a real phase function. Given that

(iqsA)ψ=0\left(\boldsymbol{\nabla}-\frac{i q_{s}}{\hbar} \mathbf{A}\right) \psi=0

show that nsn_{s} is constant and that θ=qsA\hbar \boldsymbol{\nabla} \theta=q_{s} \mathbf{A}. Given also that T<TcT<T_{c}, deduce that (*) allows such solutions for a certain choice of nsn_{s}, which should be determined. Verify that your results imply j=0\mathbf{j}=\mathbf{0}. Show also that B=0\mathbf{B}=\mathbf{0} and hence that ( \dagger ) is solved.

Let S\mathcal{S} be a surface within the superconductor with closed boundary C\mathcal{C}. Show that the magnetic flux through S\mathcal{S} is

ΦSBdS=qs[θ]C\Phi \equiv \int_{\mathcal{S}} \mathbf{B} \cdot \mathbf{d} \mathbf{S}=\frac{\hbar}{q_{s}}[\theta]_{\mathcal{C}}

Discuss, briefly, flux quantization.