2.II.35C

General Relativity
Part II, 2005

State without proof the properties of local inertial coordinates xax^{a} centred on an arbitrary spacetime event pp. Explain their physical significance.

Obtain an expression for aΓbc\partial_{a} \Gamma_{b}{ }^{c} at pp in inertial coordinates. Use it to derive the formula

Rabcd=12(bcgad+adgbcbdgacacgbd)R_{a b c d}=\frac{1}{2}\left(\partial_{b} \partial_{c} g_{a d}+\partial_{a} \partial_{d} g_{b c}-\partial_{b} \partial_{d} g_{a c}-\partial_{a} \partial_{c} g_{b d}\right)

for the components of the Riemann tensor at pp in local inertial coordinates. Hence deduce that at any point in any chart Rabcd=RcdabR_{a b c d}=R_{c d a b}.

Consider the metric

ds2=ηabdxadxb(1+L2ηabxaxb)2d s^{2}=\frac{\eta_{a b} d x^{a} d x^{b}}{\left(1+L^{-2} \eta_{a b} x^{a} x^{b}\right)^{2}}

where ηab=diag(1,1,1,1)\eta_{a b}=\operatorname{diag}(1,1,1,-1) is the Minkowski metric tensor and LL is a constant. Compute the Ricci scalar R=RababR=R_{a b}^{a b} at the origin xa=0x^{a}=0.