3.II.38A

Numerical Analysis
Part II, 2005

Consider the Runge-Kutta method

k1=f(yn)k2=f(yn+(1a)hk1+ahk2),yn+1=yn+h2(k1+k2)\begin{aligned} k_{1} &=f\left(y_{n}\right) \\ k_{2} &=f\left(y_{n}+(1-a) h k_{1}+a h k_{2}\right), \\ y_{n+1} &=y_{n}+\frac{h}{2}\left(k_{1}+k_{2}\right) \end{aligned}

for the solution of the scalar ordinary differential equation y=f(y)y^{\prime}=f(y). Here aa is a real parameter.

(a) Determine the order of the method.

(b) Find the range of values of aa for which the method is A-stable.