1.I.7B

Dynamical Systems
Part II, 2005

State Dulac's Criterion and the Poincaré-Bendixson Theorem regarding the existence of periodic solutions to the dynamical system x˙=f(x)\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x}) in R2\mathbb{R}^{2}. Hence show that

x˙=yy˙=x+y(μ2x2y2)\begin{aligned} &\dot{x}=y \\ &\dot{y}=-x+y\left(\mu-2 x^{2}-y^{2}\right) \end{aligned}

has no periodic solutions if μ<0\mu<0 and at least one periodic solution if μ>0\mu>0.