1.I.10D
(a) Around after the big bang , neutrons and protons are kept in equilibrium by weak interactions such as
Show that, in equilibrium, the neutron-to-proton ratio is given by
where corresponds to the mass difference between the neutron and the proton. Explain briefly why we can neglect the difference in the chemical potentials.
(b) The ratio of the weak interaction rate which maintains (*) to the Hubble expansion rate is given by
Explain why the neutron-to-proton ratio effectively "freezes out" once , except for some slow neutron decay. Also explain why almost all neutrons are subsequently captured in ; estimate the value of the relative mass density (with ) given a final ratio .
(c) Suppose instead that the weak interaction rate were very much weaker than that described by equation . Describe the effect on the relative helium density . Briefly discuss the wider implications of this primordial helium-to-hydrogen ratio on stellar lifetimes and life on earth.