3.II.17F

Graph Theory
Part II, 2005

Let XX and YY be disjoint sets of n6n \geqslant 6 vertices each. Let GG be a bipartite graph formed by adding edges between XX and YY randomly and independently with probability p=1/100p=1 / 100. Let e(U,V)e(U, V) be the number of edges of GG between the subsets UXU \subset X and VYV \subset Y. Let k=n1/2k=\left\lceil n^{1 / 2}\right\rceil. Consider three events A,B\mathcal{A}, \mathcal{B} and C\mathcal{C}, as follows.

A: there exist UX,VY with U=V=k and e(U,V)=0B: there exist xX,WY with W=nk and e({x},W)=0C: there exist ZX,yY with Z=nk and e(Z,{y})=0\begin{array}{ll} \mathcal{A}: & \text { there exist } U \subset X, V \subset Y \text { with }|U|=|V|=k \text { and } e(U, V)=0 \\ \mathcal{B}: & \text { there exist } x \in X, W \subset Y \text { with }|W|=n-k \text { and } e(\{x\}, W)=0 \\ \mathcal{C}: & \text { there exist } Z \subset X, y \in Y \text { with }|Z|=n-k \text { and } e(Z,\{y\})=0 \end{array}

Show that Pr(A)n2k(1p)k2\operatorname{Pr}(\mathcal{A}) \leqslant n^{2 k}(1-p)^{k^{2}} and Pr(BC)2nk+1(1p)nk\operatorname{Pr}(\mathcal{B} \cup \mathcal{C}) \leqslant 2 n^{k+1}(1-p)^{n-k}. Hence show that Pr(ABC)<3n2k(1p)n/2\operatorname{Pr}(\mathcal{A} \cup \mathcal{B} \cup \mathcal{C})<3 n^{2 k}(1-p)^{n / 2} and so show that, almost surely, none of A,B\mathcal{A}, \mathcal{B} or C\mathcal{C} occur. Deduce that, almost surely, GG has a matching from XX to YY.