2.II.18G
Part II, 2005
Let be a field of characteristic 0 containing all roots of unity.
(i) Let be the splitting field of the polynomial where . Show that the Galois group of is cyclic.
(ii) Suppose that is a cyclic extension of degree over . Let be a generator of the Galois group and a primitive -th root of 1 . By considering the resolvent
of elements , show that is the splitting field of a polynomial for some .