1.II .25 J. 25 \mathrm{~J} \quad

Probability and Measure
Part II, 2005

Let (Ω,F,P)(\Omega, \mathcal{F}, \mathbb{P}) be a probability space. For GF\mathcal{G} \subseteq \mathcal{F}, what is meant by saying that G\mathcal{G} is a π\pi-system? State the 'uniqueness of extension' theorem for measures on σ(G)\sigma(\mathcal{G}) having given values on G\mathcal{G}.

For G,HF\mathcal{G}, \mathcal{H} \subseteq \mathcal{F}, we call G,H\mathcal{G}, \mathcal{H} independent if

P(GH)=P(G)P(H) for all GG,HH\mathbb{P}(G \cap H)=\mathbb{P}(G) \mathbb{P}(H) \quad \text { for all } \quad G \in \mathcal{G}, H \in \mathcal{H}

If G\mathcal{G} and H\mathcal{H} are independent π\pi-systems, show that σ(G)\sigma(\mathcal{G}) and σ(H)\sigma(\mathcal{H}) are independent.

Let Y1,Y2,,Ym,Z1,Z2,,ZnY_{1}, Y_{2}, \ldots, Y_{m}, Z_{1}, Z_{2}, \ldots, Z_{n} be independent random variables on (Ω,F,P)(\Omega, \mathcal{F}, \mathbb{P}). Show that the σ\sigma-fields σ(Y)=σ(Y1,Y2,,Ym)\sigma(Y)=\sigma\left(Y_{1}, Y_{2}, \ldots, Y_{m}\right) and σ(Z)=σ(Z1,Z2,,Zn)\sigma(Z)=\sigma\left(Z_{1}, Z_{2}, \ldots, Z_{n}\right) are independent.