3.II.24 J3 . \mathrm{II} . 24 \mathrm{~J} \quad

Probability and Measure
Part II, 2005

Let (Ω,F,μ)(\Omega, \mathcal{F}, \mu) be a measure space. For a measurable function f:ΩRf: \Omega \rightarrow \mathbb{R}, and p[1,)p \in[1, \infty), let fp=[μ(fp)]1/p\|f\|_{p}=\left[\mu\left(|f|^{p}\right)\right]^{1 / p}. Let LpL^{p} be the space of all such ff with fp<\|f\|_{p}<\infty. Explain what is meant by each of the following statements:

(a) A sequence of functions (fn:n1)\left(f_{n}: n \geqslant 1\right) is Cauchy in LpL^{p}.

(b) LpL^{p} is complete.

Show that LpL^{p} is complete for p[1,)p \in[1, \infty).

Take Ω=(1,),F\Omega=(1, \infty), \mathcal{F} the Borel σ\sigma-field of Ω\Omega, and μ\mu the Lebesgue measure on (Ω,F)(\Omega, \mathcal{F}). For p=1,2p=1,2, determine which if any of the following sequences of functions are Cauchy in LpL^{p}

(i) fn(x)=x11(1,n)(x)f_{n}(x)=x^{-1} 1_{(1, n)}(x),

(ii) gn(x)=x21(1,n)(x)g_{n}(x)=x^{-2} 1_{(1, n)}(x),

where 1A1_{A} denotes the indicator function of the set AA.