3.I.2GTopics in AnalysisPart II, 2006Let a0,a1,a2,…a_{0}, a_{1}, a_{2}, \ldotsa0,a1,a2,… be positive integers and, for each nnn, letpnqn=a0+1a1+1a2+⋅⋱+1an\frac{p_{n}}{q_{n}}=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+} \cdot \ddots+\frac{1}{a_{n}}}qnpn=a0+a1+a2+1⋅⋱+an11with (pn,qn)=1\left(p_{n}, q_{n}\right)=1(pn,qn)=1.Obtain an expression for the matrix (pnpn−1qnqn−1)\left(\begin{array}{cc}p_{n} & p_{n-1} \\ q_{n} & q_{n-1}\end{array}\right)(pnqnpn−1qn−1) and use it to show that pnqn−1−qnpn−1=(−1)n+1.p_{n} q_{n-1}-q_{n} p_{n-1}=(-1)^{n+1} .pnqn−1−qnpn−1=(−1)n+1.