3.I.2G

Topics in Analysis
Part II, 2006

Let a0,a1,a2,a_{0}, a_{1}, a_{2}, \ldots be positive integers and, for each nn, let

pnqn=a0+1a1+1a2++1an\frac{p_{n}}{q_{n}}=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+} \cdot \ddots+\frac{1}{a_{n}}}

with (pn,qn)=1\left(p_{n}, q_{n}\right)=1.

Obtain an expression for the matrix (pnpn1qnqn1)\left(\begin{array}{cc}p_{n} & p_{n-1} \\ q_{n} & q_{n-1}\end{array}\right) and use it to show that pnqn1qnpn1=(1)n+1.p_{n} q_{n-1}-q_{n} p_{n-1}=(-1)^{n+1} .