3.II.27I

Stochastic Financial Models
Part II, 2006

Let rr denote the riskless rate and let σ>0\sigma>0 be a fixed volatility parameter.

(a) Let (St)t0\left(S_{t}\right)_{t \geqslant 0} be a Black-Scholes asset with zero dividends:

St=S0exp(σBt+(rσ2/2)t),S_{t}=S_{0} \exp \left(\sigma B_{t}+\left(r-\sigma^{2} / 2\right) t\right),

where BB is standard Brownian motion. Derive the Black-Scholes partial differential equation for the price of a European option on SS with bounded payoff φ(ST)\varphi\left(S_{T}\right) at expiry TT :

tV+12σ2S2SSV+rSSVrV=0,V(T,)=φ()\partial_{t} V+\frac{1}{2} \sigma^{2} S^{2} \partial_{S S} V+r S \partial_{S} V-r V=0, \quad V(T, \cdot)=\varphi(\cdot)

[You may use the fact that for C2C^{2} functions f:R×RRf: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} satisfying exponential growth conditions, and standard Brownian motion BB, the process

Ctf=f(t,Bt)0t(tf+12BBf)(s,Bs)dsC_{t}^{f}=f\left(t, B_{t}\right)-\int_{0}^{t}\left(\partial_{t} f+\frac{1}{2} \partial_{B B} f\right)\left(s, B_{s}\right) d s

is a martingale.]

(b) Indicate the changes in your argument when the asset pays dividends continuously at rate D>0D>0. Find the corresponding Black-Scholes partial differential equation.

(c) Assume D=0D=0. Find a closed form solution for the time-0 price of a European power option with payoff STnS_{T}^{n}.