1.I .3 F. 3 \mathrm{~F} \quad

Geometry and Groups
Part II, 2006

Suppose Si:RnRnS_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} is a similarity with contraction factor ci(0,1)c_{i} \in(0,1) for 1ik1 \leqslant i \leqslant k. Let XX be the unique non-empty compact invariant set for the SiS_{i} 's. State a formula for the Hausdorff dimension of XX, under an assumption on the SiS_{i} 's you should state. Hence compute the Hausdorff dimension of the subset XX of the square [0,1]2[0,1]^{2} defined by dividing the square into a 5×55 \times 5 array of squares, removing the open middle square (2/5,3/5)2(2 / 5,3 / 5)^{2}, then removing the middle 1/251 / 25 th of each of the remaining 24 squares, and so on.