2.II.31E

Integrable Systems
Part II, 2006

Let ϕ(t)\phi(t) satisfy the singular integral equation

(t4+t3t2)ϕ(t)2+(t4t3t2)2πiCϕ(τ)τtdτ=(A1)t3+t2\left(t^{4}+t^{3}-t^{2}\right) \frac{\phi(t)}{2}+\frac{\left(t^{4}-t^{3}-t^{2}\right)}{2 \pi i} \oint_{C} \frac{\phi(\tau)}{\tau-t} d \tau=(A-1) t^{3}+t^{2}

where CC denotes the circle of radius 2 centred on the origin, \oint denotes the principal value integral and AA is a constant. Derive the associated Riemann-Hilbert problem, and compute the canonical solution of the corresponding homogeneous problem.

Find the value of AA such that ϕ(t)\phi(t) exists, and compute the unique solution ϕ(t)\phi(t) if AA takes this value.