1.II.33A

Applications of Quantum Mechanics
Part II, 2006

Consider a particle of mass mm and momentum k\hbar k moving under the influence of a spherically symmetric potential V(r)V(r) such that V(r)=0V(r)=0 for rar \geqslant a. Define the scattering amplitude f(θ)f(\theta) and the phase shift δ(k)\delta_{\ell}(k). Here θ\theta is the scattering angle. How is f(θ)f(\theta) related to the differential cross section?

Obtain the partial-wave expansion

f(θ)=1k=0(2+1)eiδsinδP(cosθ).f(\theta)=\frac{1}{k} \sum_{\ell=0}^{\infty}(2 \ell+1) e^{i \delta_{\ell}} \sin \delta_{\ell} P_{\ell}(\cos \theta) .

Let R(r)R_{\ell}(r) be a solution of the radial Schrödinger equation, regular at r=0r=0, for energy 2k2/2m\hbar^{2} k^{2} / 2 m and angular momentum \ell. Let

Q(k)=aR(a)R(a)kaj(ka)j(ka)Q_{\ell}(k)=a \frac{R_{\ell}^{\prime}(a)}{R_{\ell}(a)}-k a \frac{j_{\ell}^{\prime}(k a)}{j_{\ell}(k a)}

Obtain the relation

tanδ=Q(k)j2(ka)kaQ(k)n(ka)j(ka)ka1.\tan \delta_{\ell}=\frac{Q_{\ell}(k) j_{\ell}^{2}(k a) k a}{Q_{\ell}(k) n_{\ell}(k a) j_{\ell}(k a) k a-1} .

Suppose that

tanδγk0k,\tan \delta_{\ell} \approx \frac{\gamma}{k_{0}-k},

for some \ell, with all other δ\delta_{\ell} small for kk0k \approx k_{0}. What does this imply for the differential cross section when kk0k \approx k_{0} ?

[For V=0V=0, the two independent solutions of the radial Schrödinger equation are j(kr)j_{\ell}(k r) and n(kr)n_{\ell}(k r) with

j(ρ)1ρsin(ρ12π),n(ρ)1ρcos(ρ12π) as ρeiρcosθ==0(2+1)ij(ρ)P(cosθ)\begin{aligned} j_{\ell}(\rho) & \sim \frac{1}{\rho} \sin \left(\rho-\frac{1}{2} \ell \pi\right), \quad n_{\ell}(\rho) \sim-\frac{1}{\rho} \cos \left(\rho-\frac{1}{2} \ell \pi\right) \quad \text { as } \quad \rho \rightarrow \infty \\ e^{i \rho \cos \theta} &=\sum_{\ell=0}^{\infty}(2 \ell+1) i^{\ell} j_{\ell}(\rho) P_{\ell}(\cos \theta) \end{aligned}

Note that the Wronskian ρ2(j(ρ)n(ρ)j(ρ)n(ρ))\rho^{2}\left(j_{\ell}(\rho) n_{\ell}^{\prime}(\rho)-j_{\ell}^{\prime}(\rho) n_{\ell}(\rho)\right) is independent of ρ.]\left.\rho .\right]