3.II.33A

Applications of Quantum Mechanics
Part II, 2006

Consider a one-dimensional crystal of lattice space bb, with atoms having positions xsx_{s} and momenta ps,s=0,1,2,,N1p_{s}, s=0,1,2, \ldots, N-1, such that the classical Hamiltonian is

H=s=0N1(ps22m+12mλ2(xs+1xsb)2)H=\sum_{s=0}^{N-1}\left(\frac{p_{s}^{2}}{2 m}+\frac{1}{2} m \lambda^{2}\left(x_{s+1}-x_{s}-b\right)^{2}\right)

where we identify xN=x0x_{N}=x_{0}. Show how this may be quantized to give the energy eigenstates consisting of a ground state 0|0\rangle together with free phonons with energy ω(kr)\hbar \omega\left(k_{r}\right) where kr=2πr/Nbk_{r}=2 \pi r / N b for suitable integers rr. Obtain the following expression for the quantum operator xsx_{s}

xs=sb+(2mN)12r1ω(kr)(areikrsb+areikrsb)x_{s}=s b+\left(\frac{\hbar}{2 m N}\right)^{\frac{1}{2}} \sum_{r} \frac{1}{\sqrt{\omega\left(k_{r}\right)}}\left(a_{r} e^{i k_{r} s b}+a_{r}^{\dagger} e^{-i k_{r} s b}\right)

where ar,ara_{r}, a_{r}^{\dagger} are annihilation and creation operators, respectively.

An interaction involves the matrix element

M=s=0N10eiqxs0.M=\sum_{s=0}^{N-1}\left\langle 0\left|e^{i q x_{s}}\right| 0\right\rangle .

Calculate this and show that M2|M|^{2} has its largest value when q=2πn/bq=2 \pi n / b for integer nn.

Disregard the case ω(kr)=0\omega\left(k_{r}\right)=0.

[You may use the relations

s=0N1eikrsb={N,r=Nb0 otherwise \sum_{s=0}^{N-1} e^{i k_{r} s b}= \begin{cases}N, & r=N b \\ 0 & \text { otherwise }\end{cases}

and eA+B=eAeBe12[A,B]e^{A+B}=e^{A} e^{B} e^{-\frac{1}{2}[A, B]} if [A,B][A, B] commutes with AA and with B.]\left.B .\right]