4.II .35E. 35 \mathrm{E} \quad

Electrodynamics
Part II, 2006

The retarded scalar potential produced by a charge distribution ρ(t,x)\rho\left(t^{\prime}, \mathbf{x}^{\prime}\right) is

φ(t,x)=14πϵ0d3xρ(tR,x)R,\varphi(t, \mathbf{x})=\frac{1}{4 \pi \epsilon_{0}} \int d^{3} x^{\prime} \frac{\rho\left(t-R, \mathbf{x}^{\prime}\right)}{R},

where R=RR=|\mathbf{R}| and R=xx\mathbf{R}=\mathbf{x}-\mathbf{x}^{\prime}. By use of an appropriate delta function rewrite the integral as an integral over both d3xd^{3} x^{\prime} and dtd t^{\prime} involving ρ(t,x)\rho\left(t^{\prime}, \mathbf{x}^{\prime}\right).

Now specialize to a point charge qq moving on a path x=x0(t)\mathbf{x}^{\prime}=\mathbf{x}_{0}\left(t^{\prime}\right) so that we may set

ρ(t,x)=qδ(3)(xx0(t)).\rho\left(t^{\prime}, \mathbf{x}^{\prime}\right)=q \delta^{(3)}\left(\mathbf{x}^{\prime}-\mathbf{x}_{0}\left(t^{\prime}\right)\right) .

By performing the volume integral first obtain the Liénard-Wiechert potential

φ(t,x)=q4πϵ01(RvR),\varphi(t, \mathbf{x})=\frac{q}{4 \pi \epsilon_{0}} \frac{1}{\left(R^{*}-\mathbf{v} \cdot \mathbf{R}^{*}\right)},

where R\mathbf{R}^{*} and v\mathbf{v} should be specified.

Obtain the corresponding result for the magnetic potential.