1.II.35A

General Relativity
Part II, 2006

Let ϕ(x)\phi(x) be a scalar field and a\nabla_{a} denote the Levi-Civita covariant derivative operator of a metric tensor gabg_{a b}. Show that

abϕ=baϕ\nabla_{a} \nabla_{b} \phi=\nabla_{b} \nabla_{a} \phi

If the Ricci tensor, RabR_{a b}, of the metric gabg_{a b} satisfies

Rab=aϕbϕ,R_{a b}=\partial_{a} \phi \partial_{b} \phi,

find the energy momentum tensor TabT_{a b} and use the contracted Bianchi identity to show that, if aϕ0\partial_{a} \phi \neq 0, then

aaϕ=0\nabla_{a} \nabla^{a} \phi=0

Show further that ()(*) implies

a(ggabbϕ)=0\partial_{a}\left(\sqrt{-g} g^{a b} \partial_{b} \phi\right)=0