Let ϕ(x) be a scalar field and ∇a denote the Levi-Civita covariant derivative operator of a metric tensor gab. Show that
∇a∇bϕ=∇b∇aϕ
If the Ricci tensor, Rab, of the metric gab satisfies
Rab=∂aϕ∂bϕ,
find the energy momentum tensor Tab and use the contracted Bianchi identity to show that, if ∂aϕ=0, then
∇a∇aϕ=0
Show further that (∗) implies
∂a(−ggab∂bϕ)=0