3.I.1HNumber TheoryPart II, 2006Let N=p1p2…prN=p_{1} p_{2} \ldots p_{r}N=p1p2…pr be a product of distinct primes, and let λ(N)\lambda(N)λ(N) be the least common multiple of p1−1,p2−1,…,pr−1p_{1}-1, p_{2}-1, \ldots, p_{r}-1p1−1,p2−1,…,pr−1. Prove thataλ(N)≡1 mod N when (a,N)=1.a^{\lambda(N)} \equiv 1 \bmod N \quad \text { when } \quad(a, N)=1 .aλ(N)≡1modN when (a,N)=1.Now take N=7×13×19N=7 \times 13 \times 19N=7×13×19, and prove thataN−1≡1 mod N when (a,N)=1.a^{N-1} \equiv 1 \bmod N \quad \text { when } \quad(a, N)=1 .aN−1≡1modN when (a,N)=1.