3.I.5I

Statistical Modelling
Part II, 2006

Consider a generalized linear model for independent observations Y1,,YnY_{1}, \ldots, Y_{n}, with E(Yi)=μi\mathbb{E}\left(Y_{i}\right)=\mu_{i} for i=1,,ni=1, \ldots, n. What is a linear predictor? What is meant by the link function? If YiY_{i} has model function (or density) of the form

f(yi;μi,σ2)=exp[1σ2{θ(μi)yiK(θ(μi))}]a(σ2,yi)f\left(y_{i} ; \mu_{i}, \sigma^{2}\right)=\exp \left[\frac{1}{\sigma^{2}}\left\{\theta\left(\mu_{i}\right) y_{i}-K\left(\theta\left(\mu_{i}\right)\right)\right\}\right] a\left(\sigma^{2}, y_{i}\right)

for yiYR,μiMR,σ2Φ(0,)y_{i} \in \mathcal{Y} \subseteq \mathbb{R}, \mu_{i} \in \mathcal{M} \subseteq \mathbb{R}, \sigma^{2} \in \Phi \subseteq(0, \infty), where a(σ2,yi)a\left(\sigma^{2}, y_{i}\right) is a known positive function, define the canonical link function.

Now suppose that Y1,,YnY_{1}, \ldots, Y_{n} are independent with YiBin(1,μi)Y_{i} \sim \operatorname{Bin}\left(1, \mu_{i}\right) for i=1,,ni=1, \ldots, n. Derive the canonical link function.