1.II.14E

Dynamical Systems
Part II, 2006

(a) An autonomous dynamical system x˙=f(x)\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x}) in R2\mathbb{R}^{2} has a periodic orbit x=X(t)\mathbf{x}=\mathbf{X}(t) with period TT. The linearized evolution of a small perturbation x=X(t)+η(t)\mathbf{x}=\mathbf{X}(t)+\boldsymbol{\eta}(t) is given by ηi(t)=Φij(t)ηj(0)\eta_{i}(t)=\Phi_{i j}(t) \eta_{j}(0). Obtain the differential equation and initial condition satisfied by the matrix Φ(t)\boldsymbol{\Phi}(t).

Define the Floquet multipliers of the orbit. Explain why one of the multipliers is always unity and show that the other is given by

exp(0Tf(X(t))dt)\exp \left(\int_{0}^{T} \nabla \cdot \mathbf{f}(\mathbf{X}(t)) d t\right)

(b) Use the 'energy-balance' method for nearly Hamiltonian systems to find a leadingorder approximation to the amplitude of the limit cycle of the equation

x¨+ϵ(αx2+βx˙2γ)x˙+x=0,\ddot{x}+\epsilon\left(\alpha x^{2}+\beta \dot{x}^{2}-\gamma\right) \dot{x}+x=0,

where 0<ϵ10<\epsilon \ll 1 and (α+3β)γ>0(\alpha+3 \beta) \gamma>0.

Compute a leading-order approximation to the nontrivial Floquet multiplier of the limit cycle and hence determine its stability.

[You may assume that 02πsin2θcos2θdθ=π/4\int_{0}^{2 \pi} \sin ^{2} \theta \cos ^{2} \theta d \theta=\pi / 4 and 02πcos4θdθ=3π/4\int_{0}^{2 \pi} \cos ^{4} \theta d \theta=3 \pi / 4.]