2.II.14E

Dynamical Systems
Part II, 2006

Let F:IIF: I \rightarrow I be a continuous one-dimensional map of an interval IRI \subset \mathbb{R}. Explain what is meant by saying (a) that FF has a horseshoe, (b) that FF is chaotic (Glendinning's definition).

Consider the tent map defined on the interval [0,1][0,1] by

F(x)={μx0x<12μ(1x)12x1F(x)= \begin{cases}\mu x & 0 \leqslant x<\frac{1}{2} \\ \mu(1-x) & \frac{1}{2} \leqslant x \leqslant 1\end{cases}

with 1<μ21<\mu \leqslant 2.

Find the non-zero fixed point x0x_{0} and the points x1<12<x2x_{-1}<\frac{1}{2}<x_{-2} that satisfy

F2(x2)=F(x1)=x0.F^{2}\left(x_{-2}\right)=F\left(x_{-1}\right)=x_{0} .

Sketch a graph of FF and F2F^{2} showing the points corresponding to x2,x1x_{-2}, x_{-1} and x0x_{0}. Hence show that F2F^{2} has a horseshoe if μ21/2\mu \geqslant 2^{1 / 2}.

Explain briefly why F4F^{4} has a horseshoe when 21/4μ<21/22^{1 / 4} \leqslant \mu<2^{1 / 2} and why there are periodic points arbitrarily close to x0x_{0} for μ21/2\mu \geqslant 2^{1 / 2}, but no such points for 21/4μ<21/22^{1 / 4} \leqslant \mu<2^{1 / 2}.