1.I.8E

Further Complex Methods
Part II, 2006

The function f(t)f(t) satisfies f(t)=0f(t)=0 for t<1t<1 and

f(t+1)12f(t)=H(t),f(t+1)-\frac{1}{2} f(t)=H(t),

where H(t)H(t) is the Heaviside step function. By taking Laplace transforms, show that, for t1t \geqslant 1,

f(t)=2+21tn=e2πnit2πnilog2f(t)=2+2^{1-t} \sum_{n=-\infty}^{\infty} \frac{e^{2 \pi n i t}}{2 \pi n i-\log 2}

and verify directly from the inversion integral that your solution satisfies f(t)=0f(t)=0 for t<1t<1.