3.I.8EFurther Complex MethodsPart II, 2006Show that, for b≠0b \neq 0b=0,P∫0∞cosuu2−b2du=−π2bsinb\mathcal{P} \int_{0}^{\infty} \frac{\cos u}{u^{2}-b^{2}} d u=-\frac{\pi}{2 b} \sin bP∫0∞u2−b2cosudu=−2bπsinbwhere P\mathcal{P}P denotes the Cauchy principal value.