4.I.8E

Further Complex Methods
Part II, 2006

By means of the change of variable u=rs,v=r(1s)u=r s, v=r(1-s) in a suitable double integral, or otherwise, show that for Rez>0\operatorname{Re} z>0

[Γ(12z)]2=B(12z,12z)Γ(z)\left[\Gamma\left(\frac{1}{2} z\right)\right]^{2}=B\left(\frac{1}{2} z, \frac{1}{2} z\right) \Gamma(z)

Deduce that, if Γ(z)=0\Gamma(z)=0 for some zz with Rez>0\operatorname{Re} z>0, then Γ(z/2m)=0\Gamma\left(z / 2^{m}\right)=0 for any positive integer mm.

Prove that Γ(z)0\Gamma(z) \neq 0 for any zz.