2.II.15D

Cosmology
Part II, 2006

(a) Consider a homogeneous and isotropic universe filled with relativistic matter of mass density ρ(t)\rho(t) and scale factor a(t)a(t). Consider the energy E(t)ρ(t)c2V(t)E(t) \equiv \rho(t) c^{2} V(t) of a small fluid element in a comoving volume V0V_{0} where V(t)=a3(t)V0V(t)=a^{3}(t) V_{0}. Show that for slow (adiabatic) changes in volume, the density will satisfy the fluid conservation equation

ρ˙=3a˙a(ρ+P/c2)\dot{\rho}=-3 \frac{\dot{a}}{a}\left(\rho+P / c^{2}\right)

where PP is the pressure.

(b) Suppose that a flat (k=0)(k=0) universe is filled with two matter components:

(i) radiation with an equation of state Pr=13ρrc2P_{\mathrm{r}}=\frac{1}{3} \rho_{\mathrm{r}} c^{2}.

(ii) a gas of cosmic strings with an equation of state Ps=13ρsc2P_{\mathrm{s}}=-\frac{1}{3} \rho_{\mathrm{s}} c^{2}.

Use the fluid conservation equation to show that the total relativistic mass density behaves as

ρ=ρr0a4+ρs0a2,\rho=\frac{\rho_{\mathrm{r} 0}}{a^{4}}+\frac{\rho_{\mathrm{s} 0}}{a^{2}},

where ρr0\rho_{\mathrm{r} 0} and ρs0\rho_{\mathrm{s} 0} are respectively the radiation and string densities today (that is, at t=t0t=t_{0} when a(t0)=1a\left(t_{0}\right)=1 ). Assuming that both the Hubble parameter today H0H_{0} and the ratio βρr0/ρs0\beta \equiv \rho_{\mathrm{r} 0} / \rho_{\mathrm{s} 0} are known, show that the Friedmann equation can be rewritten as

(a˙a)2=H02a4(a2+β1+β).\left(\frac{\dot{a}}{a}\right)^{2}=\frac{H_{0}^{2}}{a^{4}}\left(\frac{a^{2}+\beta}{1+\beta}\right) .

Solve this equation to find the following solution for the scale factor

a(t)=(H0t)1/2(1+β)1/2[H0t+2β1/2(1+β)1/2]1/2.a(t)=\frac{\left(H_{0} t\right)^{1 / 2}}{(1+\beta)^{1 / 2}}\left[H_{0} t+2 \beta^{1 / 2}(1+\beta)^{1 / 2}\right]^{1 / 2} .

Show that the scale factor has the expected asymptotic behaviour at early times t0t \rightarrow 0.

Hence show that the age of this universe today is

t0=H01(1+β)1/2[(1+β)1/2β1/2]t_{0}=H_{0}^{-1}(1+\beta)^{1 / 2}\left[(1+\beta)^{1 / 2}-\beta^{1 / 2}\right]

and that the time teqt_{\mathrm{eq}} of equal radiation and string densities (ρr=ρs)\left(\rho_{\mathrm{r}}=\rho_{\mathrm{s}}\right) is

teq=H01(21)β1/2(1+β)1/2t_{\mathrm{eq}}=H_{0}^{-1}(\sqrt{2}-1) \beta^{1 / 2}(1+\beta)^{1 / 2}