2.I.2G

Topics in Analysis
Part II, 2006

(a) State Chebyshev's equal ripple criterion.

(b) Let f:[1,1]Rf:[-1,1] \rightarrow \mathbb{R} be defined by

f(x)=cos4πxf(x)=\cos 4 \pi x

and let gg be a polynomial of degree 7 . Prove that there exists an x[1,1]x \in[-1,1] such that f(x)g(x)1|f(x)-g(x)| \geqslant 1.