1.II .25 J. 25 \mathrm{~J} \quad

Probability and Measure
Part II, 2006

Let (Xn)nN\left(X_{n}\right)_{n \in \mathbb{N}} be a sequence of (real-valued, Borel-measurable) random variables on the probability space (Ω,A,P)(\Omega, \mathcal{A}, \mathbb{P}).

(a) Let (An)nN\left(A_{n}\right)_{n \in \mathbb{N}} be a sequence of events in A\mathcal{A}.

What does it mean for the events (An)nN\left(A_{n}\right)_{n \in \mathbb{N}} to be independent?

What does it mean for the random variables (Xn)nN\left(X_{n}\right)_{n \in \mathbb{N}} to be independent?

(b) Define the tail σ\sigma-algebra T\mathcal{T} for a sequence (Xn)nN\left(X_{n}\right)_{n \in \mathbb{N}} and state Kolmogorov's 010-1 law.

(c) Consider the following events in A\mathcal{A},

{Xn0 eventually }{limnX1++Xn exists }{X1++Xn0 infinitely often }\begin{gathered} \left\{X_{n} \leqslant 0 \text { eventually }\right\} \\ \left\{\lim _{n \rightarrow \infty} X_{1}+\ldots+X_{n} \text { exists }\right\} \\ \left\{X_{1}+\ldots+X_{n} \leqslant 0 \text { infinitely often }\right\} \end{gathered}

Which of them are tail events for (Xn)nN\left(X_{n}\right)_{n \in \mathbb{N}} ? Justify your answers.

(d) Let (Xn)nN\left(X_{n}\right)_{n \in \mathbb{N}} be independent random variables with

P(Xn=0)=P(Xn=1)=12 for all nN,\mathbb{P}\left(X_{n}=0\right)=\mathbb{P}\left(X_{n}=1\right)=\frac{1}{2} \quad \text { for all } n \in \mathbb{N},

and define Un=X1X2+X2X3++X2nX2n+1U_{n}=X_{1} X_{2}+X_{2} X_{3}+\ldots+X_{2 n} X_{2 n+1}.

Show that Un/ncU_{n} / n \rightarrow c a.s. for some cRc \in \mathbb{R}, and determine cc.

[Standard results may be used without proof, but should be clearly stated.]