2.II.30A

Partial Differential Equations
Part II, 2007

Define (i) the Fourier transform of a tempered distribution TS(R3)T \in \mathcal{S}^{\prime}\left(\mathbb{R}^{3}\right), and (ii) the convolution TgT * g of a tempered distribution TS(R3)T \in \mathcal{S}^{\prime}\left(\mathbb{R}^{3}\right) and a Schwartz function gS(R3)g \in \mathcal{S}\left(\mathbb{R}^{3}\right). Give a formula for the Fourier transform of TgT * g ("convolution theorem").

Let t>0t>0. Compute the Fourier transform of the tempered distribution AtS(R3)A_{t} \in \mathcal{S}^{\prime}\left(\mathbb{R}^{3}\right) defined by

At,ϕ=y=tϕ(y)dΣ(y),ϕS(R3),\left\langle A_{t}, \phi\right\rangle=\int_{\|y\|=t} \phi(y) d \Sigma(y), \quad \forall \phi \in \mathcal{S}\left(\mathbb{R}^{3}\right),

and deduce the Kirchhoff formula for the solution u(t,x)u(t, x) of

2ut2Δu=0,u(0,x)=0,ut(0,x)=g(x),gS(R3)\begin{gathered} \frac{\partial^{2} u}{\partial t^{2}}-\Delta u=0, \\ u(0, x)=0, \quad \frac{\partial u}{\partial t}(0, x)=g(x), \quad g \in \mathcal{S}\left(\mathbb{R}^{3}\right) \end{gathered}

Prove, by consideration of the quantities e=12(ut2+u2)e=\frac{1}{2}\left(u_{t}^{2}+|\nabla u|^{2}\right) and p=utup=-u_{t} \nabla u, that any C2C^{2} solution is also given by the Kirchhoff formula (uniqueness).

Prove a corresponding uniqueness statement for the initial value problem

2wt2Δw+V(x)w=0w(0,x)=0,wt(0,x)=g(x),gS(R3)\begin{gathered} \frac{\partial^{2} w}{\partial t^{2}}-\Delta w+V(x) w=0 \\ w(0, x)=0, \quad \frac{\partial w}{\partial t}(0, x)=g(x), \quad g \in \mathcal{S}\left(\mathbb{R}^{3}\right) \end{gathered}

where VV is a smooth positive real-valued function of xR3x \in \mathbb{R}^{3} only.