1.II.30B

Asymptotic Methods
Part II, 2007

State Watson's lemma, describing the asymptotic behaviour of the integral

I(λ)=0Aeλtf(t)dt,A>0I(\lambda)=\int_{0}^{A} e^{-\lambda t} f(t) d t, \quad A>0

as λ\lambda \rightarrow \infty, given that f(t)f(t) has the asymptotic expansion

f(t)tαn=0antnβf(t) \sim t^{\alpha} \sum_{n=0}^{\infty} a_{n} t^{n \beta}

as t0+t \rightarrow 0_{+}, where β>0\beta>0 and α>1\alpha>-1.

Give an account of Laplace's method for finding asymptotic expansions of integrals of the form

J(z)=ezp(t)q(t)dtJ(z)=\int_{-\infty}^{\infty} e^{-z p(t)} q(t) d t

for large real zz, where p(t)p(t) is real for real tt.

Deduce the following asymptotic expansion of the contour integral

iπ+iπexp(zcosht)dt=21/2iezΓ(12)[z1/2+18z3/2+O(z5/2)]\int_{-\infty-i \pi}^{\infty+i \pi} \exp (z \cosh t) d t=2^{1 / 2} i e^{z} \Gamma\left(\frac{1}{2}\right)\left[z^{-1 / 2}+\frac{1}{8} z^{-3 / 2}+O\left(z^{-5 / 2}\right)\right]

as zz \rightarrow \infty.