4.II.31B

Asymptotic Methods
Part II, 2007

Consider the time-independent Schrödinger equation

d2ψdx2+λ2q(x)ψ(x)=0\frac{d^{2} \psi}{d x^{2}}+\lambda^{2} q(x) \psi(x)=0

where λ1\lambda \gg 1 denotes 1\hbar^{-1} and q(x)q(x) denotes 2m[EV(x)]2 m[E-V(x)]. Suppose that

and consider a bound state ψ(x)\psi(x). Write down the possible Liouville-Green approximate solutions for ψ(x)\psi(x) in each region, given that ψ0\psi \rightarrow 0 as x|x| \rightarrow \infty.

Assume that q(x)q(x) may be approximated by q(a)(xa)q^{\prime}(a)(x-a) near x=ax=a, where q(a)>0q^{\prime}(a)>0, and by q(b)(xb)q^{\prime}(b)(x-b) near x=bx=b, where q(b)<0q^{\prime}(b)<0. The Airy function Ai(z)\operatorname{Ai}(z) satisfies

d2(Ai)dz2z(Ai)=0\frac{d^{2}(\mathrm{Ai})}{d z^{2}}-z(\mathrm{Ai})=0

and has the asymptotic expansions

Ai(z)12π1/2z1/4exp(23z3/2) as z+\operatorname{Ai}(z) \sim \frac{1}{2} \pi^{-1 / 2} z^{-1 / 4} \exp \left(-\frac{2}{3} z^{3 / 2}\right) \quad \text { as } \quad z \rightarrow+\infty

and

Ai(z)π1/2z1/4cos[(23z3/2)π4] as z.\operatorname{Ai}(z) \sim \pi^{-1 / 2}|z|^{-1 / 4} \cos \left[\left(\frac{2}{3}|z|^{3 / 2}\right)-\frac{\pi}{4}\right] \quad \text { as } \quad z \rightarrow-\infty .

Deduce that the energies EE of bound states are given approximately by the WKB condition:

λabq1/2(x)dx=(n+12)π(n=0,1,2,)\lambda \int_{a}^{b} q^{1 / 2}(x) d x=\left(n+\frac{1}{2}\right) \pi \quad(n=0,1,2, \ldots)

q(x)>0 for a<x<b and q(x)<0 for <x<a and b<x<\begin{aligned} & q(x)>0 \quad \text { for } \quad a<x<b \\ & \text { and } q(x)<0 \text { for }-\infty<x<a \text { and } b<x<\infty \end{aligned}