1.II.31E

Integrable Systems
Part II, 2007

(i) Using the Cole-Hopf transformation

u=2νϕϕxu=-\frac{2 \nu}{\phi} \frac{\partial \phi}{\partial x}

map the Burgers equation

ut+uux=ν2ux2\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=\nu \frac{\partial^{2} u}{\partial x^{2}}

to the heat equation

ϕt=ν2ϕx2\frac{\partial \phi}{\partial t}=\nu \frac{\partial^{2} \phi}{\partial x^{2}}

(ii) Given that the solution of the heat equation on the infinite line R\mathbb{R} with initial condition ϕ(x,0)=Φ(x)\phi(x, 0)=\Phi(x) is given by

ϕ(x,t)=14πνtΦ(ξ)e(xξ)24νtdξ\phi(x, t)=\frac{1}{\sqrt{4 \pi \nu t}} \int_{-\infty}^{\infty} \Phi(\xi) e^{-\frac{(x-\xi)^{2}}{4 \nu t}} d \xi

show that the solution of the analogous problem for the Burgers equation with initial condition u(x,0)=U(x)u(x, 0)=U(x) is given by

u=xξte12νG(x,ξ,t)dξe12νG(x,ξ,t)dξu=\frac{\int_{-\infty}^{\infty} \frac{x-\xi}{t} e^{-\frac{1}{2 \nu} G(x, \xi, t)} d \xi}{\int_{-\infty}^{\infty} e^{-\frac{1}{2 \nu} G(x, \xi, t)} d \xi}

where the function GG is to be determined in terms of UU.

(iii) Determine the ODE characterising the scaling reduction of the spherical modified Korteweg-de Vries equation

ut+6u2ux+3ux3+ut=0\frac{\partial u}{\partial t}+6 u^{2} \frac{\partial u}{\partial x}+\frac{\partial^{3} u}{\partial x^{3}}+\frac{u}{t}=0